机械设备
机械设备失效分析,机械设备失效分析手册
2024-01-21 13:25:37 机械设备 0人已围观
大家好,今天小编关注到一个比较有意思的话题,就是关于机械设备失效分析的问题,于是小编就整理了1个相关介绍机械设备失效分析的解答,让我们一起看看吧。
什么是机械零件的失效?
机械零件的失效是机件在载荷(包括机械载荷、热载荷、腐蚀及综合载荷等)作用下丧失最初规定的功能。
1、静强度失效。此外,当作用于零件上的应力超过了材料的屈服极限,则零件将产生塑性变形。塑性变形将导致精度下降或定位不准等,严重影响零件的正常工作,因此也属于失效。
2、疲劳强度失效。大部分机械零件是在变应力条件下工作的,变应力的作用可以引起零件疲劳破坏而导致失效。另外,零件表面受到接触变应力长期作用也会产生裂纹或微粒剥落的现象。疲劳破坏是随工作时间的延续而逐渐发生的失效形式,是引起机械零件失效的重要原因,3、摩擦学失效。摩擦学失效主要是腐蚀、磨损、打滑、胶合和接触疲劳。腐蚀是发生在金属表面的一种电化学或化学侵蚀现象,其结果将使零件表面产生锈蚀而使零件的抗疲劳能力降低。有些零件只有在满足某些工作条件下才能正常工作。例如,液体摩擦的滑动轴承,只有在存在完整的润滑油膜时才能正常地工作,否则滑动轴承将发生过热、胶合、磨损等形式的失效,属于摩擦学失效。扩展资料机械零件的具体失效形式还取决于该零件的工作条件、材质、受载状态及所产生的应力性质等多种因素。即使同一种零件,由于工作情况及机械的要求不同,也可能出现多种失效形式。例如齿轮传动可能出现轮齿折断、磨损、齿面疲劳点蚀、胶合或塑性变形等失效形式。工程中,零部件失去原有设计所规定的功能称为失效。失效包括完全丧失原定功能;功能降低和有严重损伤或隐患,继续使用会失去可靠性及安全性。机械零件的失效主要整体断裂、过大的残余变形、零件的表面破坏、破坏正常的工作条件引起的失效。航空和军工行业广泛研究发现,与时间有关的故障占所有故障的20%。这包括类型,A,B和C的故障模式。设备或组件的本质上是随机的失效模式反而更加突出,占大约80%的故障。所有故障模式类型可归纳如下:模式A:当设备或组件接近预期的工作年龄,经过一段随机的故障,失效的可能性大幅增加。模式B:俗称“浴盘曲线”,这种失效的模式与电子设备尤其相关。初期,有较高失效的可能性,但这种概率逐渐减小,进入平缓期,直到设备或组件的寿命快结束时,故障概率变大。模式C:这种模式显示随时间增长设备或组件失效的可能性。这种模式可能是持续的疲劳所致。
机械零件的失效是机件在载荷(包括机械载荷、热载荷、腐蚀及综合载荷等)作用下丧失最初规定的功能。 一般有如下形式:
1、静强度失效。 机械零件在受拉、压、弯、扭等外载荷作用时,由于某一危险截面上的静应力超过零件的强度极限而发生断裂或破坏。例如,螺栓受拉后被拉断和键或销的剪断或压溃等均属于此类失效。 此外,当作用于零件上的应力超过了材料的屈服极限,则零件将产生塑性变形。塑性变形将导致精度下降或定位不准等,严重影响零件的正常工作,因此也属于失效。
2、疲劳强度失效。 大部分机械零件是在变应力条件下工作的,变应力的作用可以引起零件疲劳破坏而导致失效。 另外,零件表面受到接触变应力长期作用也会产生裂纹或微粒剥落的现象。疲劳破坏是随工作时间的延续而逐渐发生的失效形式,是引起机械零件失效的重要原因,
3、摩擦学失效。 摩擦学失效主要是腐蚀、磨损、打滑、胶合和接触疲劳。腐蚀是发生在金属表面的一种电化学或化学侵蚀现象,其结果将使零件表面产生锈蚀而使零件的抗疲劳能力降低。 有些零件只有在满足某些工作条件下才能正常工作。例如,液体摩擦的滑动轴承,只有在存在完整的润滑油膜时才能正常地工作,否则滑动轴承将发生过热、胶合、磨损等形式的失效,属于摩擦学失效。 又如,带传动的打滑和螺纹的微动磨损也是摩擦学失效的例子。
到此,以上就是小编对于机械设备失效分析的问题就介绍到这了,希望介绍关于机械设备失效分析的1点解答对大家有用。